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Cleavage of €C bonds by transition metals under homoge-
neous conditions has recently received much scientific and
technological interest and has opened the door to a new field of
synthetic organic chemistdyThe next challenging subject is
reconstruction of new carbon skeletons after@hond cleavageé.
The C-C single bond between a carbonyl and tkearbon is
relatively weaker than other-&C single bonds. Moreover, it is
likely that a carbonyl group kinetically facilitates insertion of a
transition metal into the--C—C bond?¢2Cyclobutenediones have

recently been recognized as versatile reagents for the construction

of various multicyclic compoundsnd are easily prepared from
squaric acid.Activation of C-C bonds in cyclobutenediones by
transition-metal complexes follows the two pathways illustrated
in Scheme 1. Most transition-metal complexes, including those
of rhodium, cobalt, iron, and nickel gave (maleoyl)metal com-
plexes as a thermodynamic product resulting from insertion of
the metal between two carbonyl groups in cyclobutenediones (path
a)8 while treatment of cyclobutenediones with platinuor
rhodiunf complexes gave unsymmetrical cleavage of the four-
membered ring to give a kinetic product (path b).

The conversion of cyclobutenediones to quindraesl 5-alky-
lidene-2-cyclopentene-1,4-dioriéasing a stoichiometric amount
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Table 1. Ruw(CO)/PEg-Catalyzed Synthesis of Cyclopentenones
from Cyclobutenedionesl&é—d) and 2-Norbornene2g)?

- Isolated
Run  Cyclobutenedione Product yield(%)
P00 e
1 jzi n-Bu 75
n-Bu (0] I
1a 3a
n-BuO, O mBuQ
2 M n—Bu% 60
n-Bu o
o]
1b 3b
EtO, o] EQ
3 j;( nBu% 47
n-Bu (0]
o]
1c 3c
n-BuO, O m8uQ
4b ji anuO% 46
-B
n-BuO (¢} g

a Cyclobutenedionel) (1.0 mmol), 2-norbornene2§) (3.0 mmol),
Rug(CO)2 (0.050 mmol), PEt(0.15 mmol), and THF (1.0 mL) under
CO (3 atm) at 160C for 20 h.> CO 15 atm.
of transition-metal complexes via (maleoyl)metal complexes (path
a) has been studied in detail. However, neither transition-metal
complex-catalyzed transformation of cyclobutenediones nor the
synthetic reaction via metallacyclopentenedione or metallacy-
clobutenone complexes according to path b has been reported.
On the basis of our investigation of ruthenium cataly%#s;?
we found a novel ruthenium-catalyzed reconstructive synthesis
of cyclopentenones by an unusual coupling reaction of cy-
clobutenediones with alkenes involving-C bond cleavage (path
b). We report here that the development of this new ruthenium
catalyst system enables the rapid synthesis of cyclopentenones
without the use of alkynes.

Treatment of 4-butyl-3-isopropoxycyclobut-3-ene-1,2-dione
(18) with 2-norbornene Za) in the presence of 5 mol % Ru
(CO)2 and 15 mol % PEtin THF under 3 atm of carbon
monoxide at 160C for 20 h gave the corresponding cyclopen-
tenone3a in 75% yield with high stereoselectivityexo 100%)
(Table 1, run 1).
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Figure 1. Effect of CO pressure on B{CO)./PEg-catalyzed synthesis | [Rul

of 3afrom laand2a Reaction conditionsla (1.0 mmol),2a(3.0 mmol), 0
4a, 74%

Yield of 3a/ %

Rus(CO)2 (0.050 mmol), PEt(0.15 mmol), THF (1.0 mL) at 160C

were examined in the synthesis 8& from the reaction ofla
with 2a. An appropriate catalyst combined with a phosphorus
ligand was critical for the success of the reaction. For example,
the catalytic activity of Rg(CO)y; itselfis quite low @a, 17%),
but the concomitant use of PHigand dramatically increased mBu 0 _ ROz
the catalytic activity to giveain the best yield of 75%. Catalyst jzi ’ @ THF. GO 50 2lm
systems combined with other phosphorus ligands, such ag PBu TR e O 2a 160°C, 20h
PCy, PPh, and P(OBw), showed moderate catalytic activity,
while bidentate phosphorus ligands, such as dppe and depe, were
almost ineffective. Other ruthenium catalyst systems, such as PO Ru3(CO),; PrO
RuHx(PPh), RUHCI(CO)(PPKs, RuH,(CO)(PPh);, RuCh- M PRy @
(PPh)s, [Ru(COXCI,]./PE%, [(17°-CeHs)RUCK]/PES, and CpRu- 14d'oxage CO3atm
CI(PPh),, only promoted the polymerization or decomposition 1607C. 200
of cyclobutenediones. No cyclopentenone was obtained with ma"" 36'65%
CoCI(PPh)3 nor RhCI(PPk); catalysts, which are known to react
with cyclobutenediones to give the corresponding (maleoyl)metal under the direction of an alkoxy substituent to give a ruthena-
complexe$. This result strongly suggests that the present reaction cyclopentenedione intermedidfeAppropriate carbon monoxide
does not involve a (maleoyl)ruthenium intermediate. Among the pressure (3 atm) is needed to control seleathanoedecarbony-
solvents examined (benzene, 43%; 1,4-dioxane, 32%; acetonitrile,lation of a ruthenacyclopentenedione to a ruthenacyclobutenone
21%; DMF, 0%;N-methylpiperidine, 0%), THF gave the best intermediate, as well as to suppress complete decarbonylation to
result (yield of3a, 75%). an (alkoxy)alkyne and CO. Subsequent stereoselecisvearbo-

The carbon monoxide pressure also had a dramatic effectruthenation of 2-norbornen@4) and reductive elimination with
(Figure 1). The best result was obtained under 3 atm of carbon a retention of stereochemistry gives the corresponding cyclopen-
monoxide, and either an increase or decrease in the carbontenone3 exclusively inexoform.tcd

monoxide pressure caused a rapid decrease in the yieBa. of In conclusion, we have developed a novel method for preparing
Use of CO gave the*C-labeled cyclopentenone (70% scram-  cyclopentenones by the ruthenium-catalyzed unusual coupling of
bllng) which indicates that the external carbon monoxide is Cyc|0butened|ones with alkenes |nvo|v|ng—c bond C|eavage

needed to suppress complete decarbonylation of cyclobutenedi-The present reaction offers a novel ruthenium-catalyzed construc-
ones to the corresponding alkynes and carbon monoxide. tion of cyclopentenones without the use of alkyne substrates,

The results obtained from the reactions of several cyclobutene-\yhich may be the complement of trwatalytic intermolecular
diones (a—d) with 2-norborneneZa) under optimum conditions  payson-Khand reactiort?

are listed in Table 1. In all cases, the starting cyclobutenediones
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The effects of the catalysts, ligands, and reaction conditions

as 3,4-dibutylcyclobut-3-ene-1,2-dioriee), gave the correspond- Supporting Information Available: Experimental details and char-
ing hydroquinonetainstead of the cyclopentenone, probably via  acterization of all new compounds are provided (PDF). This material is
a (maleoyl)ruthenium intermediate (eq1)Accordingly, the ring- available free of charge via the Internet at http://pubs.acs.org.

opening of cyclobutenediones by ruthenium catalysts depends on
the substituents of the cyclobutenediones. The reaction of ethylen

(2b) with 1ain 1,4-dioxane also gave the corresponding cyclo- (13) The PausonKhand reaction mediated or catalyzed by transition-metal

pentenonedein 65% yield (eq 2). complexes has been accepted as a powerful and convergent method for the
While the reaction mechanism is not yet clear, the present construction of cyclopentenones; however, the usalkjne substrates is
reaction involves regioselective<C bond cleavage (Scheme 2). essential for the reaction. For reviews, see: (a) Schore, N.Eomnprehensie
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